
www.umbc.edu

CMSC202
Computer Science II for Majors

Lecture 19 and 20 –

STL and Iterators

Dr. Katherine Gibson

www.umbc.edu

Last Class We Covered

• Templates

– How to implement them

– Possible problems (and solutions)

– Compiling with templates

• Bits & Pieces

– Initialization lists

– The “grep” command

– Redirecting input and output

2

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• STL

– Standard Template Library

– Containers

• Iterators

– Purpose

– Manipulating

4

www.umbc.edu

STL

• STL is the Standard Template Library

• STL contains many useful things, including…

– Containers

– Iterators

– Both are templated, which means we can use
them with any type of data we want

5

www.umbc.edu

Why Use the STL?

• Good programmers know what to write

• Great programmers know what to reuse

• STL provides reusable code

• Linked list, vector, map, multimap, pair, set,
multiset, queue, stack, etc.

• Don’t reinvent the wheel

–Unless we tell you to!

6

www.umbc.edu

STL Containers

www.umbc.edu

STL Containers

• All containers support a few basic methods
– size()

– empty()

– clear()

• All containers are implemented as a class

8

www.umbc.edu

STL Containers

• Vectors

– Dynamic (size can be changed)

– Sequential container (elements in an order)

– Allows random access

• Using [] or .at()

9

www.umbc.edu

STL Containers

• Lists

– Linked List, (not the “list” in Python)

– Sequential (elements in an order)

– Does not support random access

– Basic functions include:
• insert()

• push_back() / push_front()

• pop_back() / pop_front()

• erase()

10

www.umbc.edu

STL Containers

• Sets

– Elements are sorted when added to the set

• Uses operator< by default

– Cannot change the value of an element once added

– No random access

– Basic functions include:
• insert()

• count()

• find()

• erase()

11

www.umbc.edu

STL Containers

• Multisets

– Same as a set, but…

• Allow duplicate elements

– Elements are sorted when added to the set

• Uses operator< by default

– Cannot change the value of an element once added

– No random access

– Same basic functions as well

12

www.umbc.edu

STL Containers

• Pairs

– Connects two items into a single object

– (Sort of like a tuple in Python)

– Member variables:
• first

• second

– Pair containers are used by other containers

13

www.umbc.edu

Examples of Using Pair

• To combine an int and a string into a pair

pair<int, string> ex1(5, "hello");

• You can then access the values in the pair
using standard "dot" notation

cout << ex1.second << endl; // "hello"

14

www.umbc.edu

Examples of Using Pair

• A function template named make_pair()
can be used to create pair objects

pair<int, string> ex2 =

make_pair(7, "ciao");

• A pair can be made with any two pieces of
information (doesn’t have to be int and string)

15

www.umbc.edu

STL Containers

• Maps

– Stores key/value pairs

– Sorts by key

• Key must be unique

• Key is not modifiable

• Value is modifiable

16

www.umbc.edu

STL Containers

• Multimaps

– Stores key/value pairs

– Sorts by key (allows duplicate keys)

• Key does not need to be unique

• Key is not modifiable

• Value is modifiable

17

www.umbc.edu

Map and Multimap Functions

• Basic functions of Maps include:
– insert()

– count()

– find()

– erase()

18

www.umbc.edu

Iterators

www.umbc.edu

Iterators

• Problem

– Not all STL classes provide random access

– How do we do “for each element in X”?

• Solution

– Iterators

• “Special” pointers

– “Iterate” through each item in the collection

• Also: encapsulation

– User shouldn’t need to know how it works

20

www.umbc.edu

About Iterators

• Allows the user to access elements in a data
structure using a familiar interface, regardless
of the internal details of the data structure

• An iterator should be able to:

– Move to the beginning (first element)

– Advance to the next element

– Return the value referred to

– Check to see if it is at the end

21

www.umbc.edu

Kinds of Iterators

• Forward iterators:

– Using ++ works on iterator

• Bidirectional iterators:

– Both ++ and -- work on iterator

• Random-access iterators:

– Using ++, --, and random access all work
with iterator

• These are "kinds" of iterators, not types!

22

www.umbc.edu

Iterators

• Essential operations
– begin()

• Returns an iterator to first item in collection

– end()

• Returns an iterator ONE BEYOND the last item
in collection

• Why does it do this?

– If the collection is empty, begin() == end()

23

www.umbc.edu

Constant and Mutable Iterators

• Behavior of the dereferencing operator
dictates if an iterator is constant or mutable

• Constant iterator:

– Cannot edit contents of container using iterator

• Mutable iterator:

– Can change corresponding element in container

24

www.umbc.edu

Constant Iterators

• Constant iterator:

– * produces read-only version of element

– Can use *p to assign to variable or output,
but cannot change element in container

• e.g., *p = <anything>; is illegal

– *p can only be on the right hand side of the
assignment operator

25

www.umbc.edu

Mutable Iterators

• Mutable iterator:

– *p can be assigned value

– Changes corresponding element in container

• i.e.: *p returns an lvalue

– *p can be on the left hand side of the assignment
operator

– (and the right hand side)

26

www.umbc.edu

Vector Example

• Here’s a very basic example of using an
iterator to move through a vector:

vector<int> v; // fill up v with data...

for (vector<int>::iterator it = v.begin();

it != v.end(); ++it) {

cout << *it << endl;

}

• This basic example should work regardless of
the container type!

27

www.umbc.edu

Set Example

int main ()

{

set<int> iSet;

iSet.insert(4);

iSet.insert(12);

iSet.insert(7);

// this looping construct works for all containers

set<int>::const_iterator position;

for (position = iSet.begin(); position != iSet.end();
++position)

{

cout << *position << endl;

}

return 0;

}

www.umbc.edu

Map Example

int main ()

{

// create an empty map using strings

// as keys and floats as values

map<string, float> stocks;

// insert some stock prices

stocks.insert(make_pair("IBM", 42.50));

stocks.insert(make_pair("XYZ", 2.50));

stocks.insert(make_pair("WX", 0.50));

// instantiate an iterator for the map

map<string, float>::iterator position;

// print all the stocks

for (position = stocks.begin(); position != stocks.end(); ++position)

cout << "(" << position->first << ", " << position->second << ")\n";

return 0;

}

www.umbc.edu

Iterators - Overloaded Operators

• * Dereferences the iterator

• ++ Moves forward to next element

• -- Moves backward to previous element

• == True if two iterators point to same element

• != True if two iterators point to different elements

• = Assignment, makes two iterators
point to same element

30

www.umbc.edu

Reverse Iterators

• The easiest way to iterate through a container
in reverse is to use a reverse_iterator
reverse_iterator p;

for (rp = container.rbegin();

rp != container.rend(); rp++)

cout << *rp << " " ;

• When using a reverse iterator, use rbegin()
and rend() instead of begin() and end()

31

www.umbc.edu

Practice Problems

• Create a vector of integers

• Using an iterator and a loop

– Change each integer to be the value of its square

• Using an iterator and a second loop

– Print each item in reverse order

32

www.umbc.edu

Announcements

• SCEQs next time

– Very important metric – please fill them out!

• Project 5 is out

– Due May 5th by 9:00 PM

• Final Exam is…

– May 17th (Tuesday) 3:30 to 5:30 PM

– Lecture Hall 1 (here)

– Comprehensive!

33

